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Defining a spin connection is necessary for formulating Dirac’s bispinor equation in
a curved space-time. Hestenes has shown that a bispinor field is equivalent to an
orthonormal tetrad of vector fields together with a complex scalar field. In this paper,
we show that using Hestenes’ tetrad for the spin connection in a Riemannian space-time
leads to a Yang-Mills formulation of the Dirac Lagrangian in which the bispinor field �

is mapped to a set of SL(2, R) × U (1) gauge potentials FK
α and a complex scalar field

ρ. This result was previously proved for a Minkowski space-time using Fierz identities.
As an application we derive several different non-Riemannian spin connections found
in the literature directly from an arbitrary linear connection acting on the tensor fields
(FK

α , ρ). We also derive spin connections for which Dirac’s bispinor equation is form
invariant. Previous work has not considered form invariance of the Dirac equation as a
criterion for defining a general spin connection.

KEY WORDS: Dirac equation; Yang–Mills theory; spinors; spin connections; general
relativity.

1. INTRODUCTION

Defining a spin connection to replace the partial derivatives in Dirac’s bispinor
equation in a Minkowski space-time, is necessary for the formulation of Dirac’s
bispinor equation in a curved space-time. All the spin connections acting on
bispinors found in the literature first introduce a local orthonormal tetrad field on
the space-time manifold and then require that the Dirac Lagrangian be invariant un-
der local change of tetrad (Utiyama, 1956; Hehl and Datta, 1971; Weinberg, 1972;
Jhangiani, 1977; Hammond, 2002; O’Raifeartaigh, 1997; Hurley and Vandyck,
2000; de Andrade et al., 2001). Invariance of the Lagrangian by itself does not
uniquely define the spin connection (Hurley and Vandyck, 2000). In this pa-
per we determine the spin connections for which the Dirac equation is form
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invariant. Form invariance means that the Dirac equation can be expressed solely
with the spin connection, with no additional terms involving the tetrad, torsion,
or non-metricity tensors (Hurley and Vandyck, 2000). We show that such spin
connections exist for all linear connections. Form invariance of Dirac’s bispinor
equation has not generally been considered as a criterion for defining a spin con-
nection (Utiyama, 1956; Hehl and Datta, 1971; Weinberg, 1972; Jhangiani, 1977;
Hammond, 2002; O’Raifeartaigh, 1997; Hurley and Vandyck, 2000; de Andrade
et al., 2001).

Using geometric algebra, Hestenes showed in 1967 that a bispinor field on a
Minkowski space-time is equivalent to an orthonormal tetrad of vector fields to-
gether with a complex scalar field, and that fermion plane waves can be represented
as rotational modes of the tetrad (Hestenes, 1967). More recently, the Dirac and
Einstein equations were unified in a tetrad formulation of a Kaluza-Klein model
which gives precisely the usual Dirac–Einstein Lagrangian (Reifler and Morris,
1995, 1996, 2003). In this model, the self-adjoint (symmetric) modes of the tetrad
describe gravity, whereas, as in Hestenes’ work, the isometric (rotational) modes
of the tetrad together with a scalar field describe fermions. An analogy can be
made between the tetrad modes and the elastic and rigid modes of a deformable
body (Reifler and Morris, 1995). For a deformable body, the elastic modes are
self-adjoint and the rigid modes are isometric with respect to the Euclidean metric
on R3. This analogy extends into the quantum realm since rigid modes satisfying
Euler’s equation can be Fermi quantized (Reifler and Morris, 1992a, 1994).

To define bispinors, even in a Minkowski space-time, a reference tetrad or its
equivalent (e.g., a normal coordinate basis) must first be defined at each point of the
space-time (Hehl and Datta, 1971; Weinberg, 1972; Jhangiani, 1977; Hammond,
2002; Geroch, 1968; Hestenes, 1971; Ashtekar and Geroch, 1974). Note that the
use of such reference tetrads has a long history, dating back to Weyl’s 1929 paper
(O’Raifeartaigh, 1997). To show that the Dirac bispinor Lagrangian depends only
on a tetrad and a scalar field, requires an appropriate choice of reference tetrad. The
appropriate choice is provided by Hestenes’ orthonormal tetrad of vector fields,
denoted as eα

a , where α = 0, 1, 2, 3 is a space-time index and a = 0, 1, 2, 3 is a
tetrad index (Hestenes, 1967). Relative to this special reference tetrad, a bispinor
field � is “at rest” at each space-time point and has components given as follows
(see Section 2):

� =




0

Re[
√

s]

0
−iIm[

√
s]


 (1.1)

where s is a complex scalar field defined in Section 2 by formula (2.4). Note that
Hestenes’ tetrad eα

a and the complex scalar field
√

s are smoothly defined locally
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in open regions about each space-time point where s is nonvanishing. In each of
these open regions, since the Dirac bispinor Lagrangian in a Riemannian space-
time depends only on the reference tetrad and (quadratically) on the bispinor field
�, we show in Section 2 using formula (1.1) that the Dirac bispinor Lagrangian
can be expressed entirely in terms of the tensor fields eα

a and s, once Hestenes’
tetrad has been chosen as the reference.

Whenever � vanishes, both s and its first partial derivatives vanish. Setting s
and its first partial derivatives to zero in the tensor form of Dirac’s bispinor equation
shows that eα

a can be chosen arbitrarily at all space-time points where � vanishes.
Thus, all aspects of Dirac’s bispinor equation are faithfully reflected in the tensor
equations (see Section 2). Since the tetrad eα

a is unconstrained by the Dirac equation
when � vanishes, a gravitational field exists even if the fermion field vanishes. We
showed in previous work that the gravitational field gαβ and the bispinor field �

(which together have 10 + 8 = 18 real components), are represented accurately by
Hestenes’ tensor fields eα

a and s (which also have 16 + 2 = 18 real components)
(Reifler and Morris, 1995, 1996, 2003).

Hestenes’ tetrad has been of interest for other applications. Zhelnorovich
used Hestenes’ tetrad together with the bispinor field at rest as in formula (1.1)
to derive spatially flat Bianchi type I solutions of the Einstein-Dirac equations
(Zhelnorovich, 1996, 1997). Hestenes’ tetrad in this application has the advantages
of reducing the number of unknowns by six and of not requiring special symmetry
directions for choosing the tetrad, which considerably simplifies the Einstein-
Dirac equations for non-diagonal metrics and makes it possible to obtain new
exact solutions (Zhelnorovich, 1996, 1997).

It might seem that Hestenes’ tensor fields do not lead to a well-posed ini-
tial value problem when isolated parts of a bispinor field, with disjoint (closed)
supports in a Minkowski space-time, are rotated 360 degrees relative to one an-
other (Reifler and Morris, 1994; Silverman, 1980). However, no such isolation
is possible because physical bispinor fields with energy bounded from below
have supports filling all of space-time, and thereby the tensor fields determine a
physical bispinor field uniquely, up to a single unobservable sign (Hegerfeldt and
Ruijsenaars, 1980; Thaller and Thaller, 1984; Reifler and Morris, 1992b; Reifler
and Vogt, 1994).

The Kaluza–Klein tetrad model is based on a constrained Yang–Mills for-
mulation of the Dirac Theory (Reifler and Morris, 1995, 1996, 2003). In this
formulation Hestenes’ tensor fields eα

a and s are mapped bijectively onto a set of
SL (2, R) × U (1) gauge potentials FK

α and a complex scalar field ρ. Thus we have
the composite map � → (eα

a , s) → (FK
α , ρ) (see Section 2). The fact that eα

a is an
orthonormal tetrad of vector fields imposes an orthogonal constraint on the gauge
potentials FK

α given by

FK
α FKβ = |ρ|2gαβ (1.2)
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where gαβ denotes the space-time metric. The gauge index K = 0, 1, 2, 3 is lowered
and raised using a gauge metric gJK and its inverse gJK (see Section 2). Repeated
indices are summed. We show in Section 2 that via the map � → (FK

α , ρ) the
Dirac bispinor Lagrangian equals the following Yang–Mills Lagrangian for the
gauge potentials FK

α and complex scalar field ρ satisfying the orthogonal constraint
(1.2), in the limit of an infinitely large coupling constant which we denote as g:

Lg = 1

4g
FK

αβF
αβ

K + 1

g0
Dα(ρ + µ)Dα(ρ + µ) (1.3)

where FK
αβ is the Yang–Mills field tensor with self coupling g, and Dα is the

Yang–Mills covariant derivative acting on the scalar field ρ and mass parameter
µ. Moreover, ρ and µ are coupled to the U (1) gauge potential F 3

α with cou-
pling constant g0 = (3/2)g, and µ = 2m0/g0 where m0 is the fermion mass (see
Section 2). In the limit that g becomes infinitely large, Lg equals Dirac’s bispinor
Lagrangian.

In Section 3 we reverse our steps by substituting a general linear connection
for the Riemannian connection in the Yang–Mills Lagrangian (1.3), and thereby
derive Dirac’s bispinor Lagrangian for space-times with general linear connec-
tions. From this Lagrangian we obtain spin connections, for space-times with
general linear connections, that satisfy the following two conditions:

1) The tensor and bispinor Lagrangians are equal.
2) The bispinor Dirac equation is form invariant.

We show that such spin connections exist for all linear connections. While
spin connections ∇a satisfying conditions (1) and (2) are not unique, we prove
that the Dirac operators D = γ a∇a formed by them are unique (where γ a are the
Dirac matrices Bjorken and Drell, 1964). Finally, in Section 3 we relate the spin
connections derived from the tensor theory to several different spin connections
discussed in the literature that do not satisfy conditions (1) and (2). These spin
connections in the literature give Dirac operators different from the unique Dirac
operators derived from the tensor theory.

2. HESTENES’ TETRAD AND THE TENSOR
FORM OF THE DIRAC LAGRANGIAN

Even in a Minkowski space-time, bispinors require a reference tetrad for their
definition. Other authors have noted that because the Dirac gamma matrices are
regarded as constant matrices, the Dirac equation, as described in most textbooks,
is not covariant even under Lorentz transformations in the usual sense (Hamilton,
1984). Covariant tensor forms of the Dirac bispinor Lagrangian were derived by
Zhelnorovich (1979) and by Takahashi (1983, 1986), using trace formulas of the
Dirac matrices known as Fierz identities (Rodriguez-Romo et al., 1992, 1993).



Hestenes’ Tetrad and Spin Connections 1311

A simpler derivation using trace formulas of the Pauli matrices was presented as
Appendix A and B of reference (Reifler and Morris, 1999). In this section we
will give a straightforward derivation of the tensor form of the Dirac Lagrangian
by using Hestenes’ tetrad (Hestenes, 1967) as the reference tetrad for the spin
connection in a Riemannian space-time. For those familiar with spin connections
(Jhangiani, 1977), this derivation will be the most direct. As in previous work,
we show that the Dirac bispinor Lagrangian equals a constrained Yang–Mills
Lagrangian for the gauge group SL (2, R) × U (1) in the limit of an infinitely
large coupling constant. Both the constraint and the limit are explicated in the
Kaluza–Klein model (Reifler and Morris, 1995, 1996, 2003).

At each point of a four-dimensional Riemannian space-time, bispinors are
defined relative to a reference tetrad of orthonormal vectors (Hehl and Datta, 1971;
Weinberg, 1972; Jhangiani, 1977; Hammond, 2002). Usually in a Minkowski
space-time the reference tetrad consists of coordinate vector fields associated with
Cartesian coordinates, but this special choice of reference tetrad is not necessary. A
general reference tetrad will be denoted by ea where a = 0, 1, 2, 3 is a tetrad index.
We can express the tetrad ea as ea = eα

a ∂α where ∂α for α = 0, 1, 2, 3 denote the
partial derivatives with respect to local space-time coordinates xα , and eα

a denote
the tensor components of ea . Tensor indices α, β, γ, δ are lowered and raised using
the space-time metric, denoted as gαβ , and its inverse gαβ . Tetrad indices a, b, c,
d are lowered and raised using a Minkowski metric gab (with diagonal elements
{1,−1,−1,−1} and zeros off the diagonal), and its inverse gab. Repeated tensor
and tetrad indices will be summed from 0 to 3.

Using a reference tetrad ea , the spin connection ∇a acting on a bispinor field
� in a Riemannian space-time is given by (Jhangiani, 1977):

∇a = eα
a ∂α − i

4
eα
a e

β

b (∇αeβc)σbc (2.1)

where

σbc = i

2
(γ bγ c − γ cγ b) (2.2)

and where ∇α denotes the Riemannian connection acting on the vector fields ea ,
and γ a are (constant) Dirac matrices. (Definitions and sign conventions for the
Dirac matrices in this paper will be as in Bjorken and Drell, 1964.)

Dirac’s bispinor Lagrangian in a Riemannian space-time is given by (Hehl
and Datta, 1971; Hammond, 2002):

LD = Re[i�̄γ a∇a� − m0s] (2.3)

where m0 denotes the fermion mass and the complex scalar field s is defined by

Re[s] = �̄�

Im[s] = i�̄γ 5� (2.4)
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where (using bispinor notation) �̄ = �+γ 0, where �+ denotes the transpose
conjugate of �, and γ 5 = iγ 0γ 1γ 2γ 3 is the fifth Dirac matrix (Bjorken and
Drell, 1964). Formula (2.3) generalizes the usual Dirac bispinor Lagrangian for
a Minkowski space-time which uses the coordinate reference tetrad ea = δα

a ∂α ,
where δα

a equals one if a = α and 0 otherwise. In Theorem 2.2, a different choice
of reference tetrad ea (Hestenes’ tetrad) will lead to the tensor form of the Dirac
Lagrangian.

Except for the mass term, Dirac’s bispinor Lagrangian (2.3) is invariant
under SL (2, R) × U (1) gauge transformations acting on the bispinor field �,
with infinitesimal generators (τK for K = 0, 1, 2, 3 defined by (Reifler and Morris,
1999, 2000):

τ0� = −i�, τ1� = i�C

τ2� = �C, τ3� = iγ 5� (2.5)

where �C denotes the charge conjugate of � (using bispinor notation Bjorken and
Drell, 1964). Note that the action of SL (2, R) × U (1) on � is real linear, whereas
usually only complex linear gauge transformations of bispinors are considered. The
infinitesimal gauge generators τ0, τ1, τ2 generate SL(2, R), and τ3 generates U (1).

The SL (2, R) × U (1) gauge transformations generated by τK commute with
Lorentz transformations (Bjorken and Drell, 1964). From formula (2.5) the com-
mutation relations of the gauge generators τK are given by

[τ0, τ1] = 2τ2, [τ0, τ2] = −2τ1

[τ1, τ2] = −2τ0 (2.6)

and τ3 commutes with all the τK . Formula (2.6) can be expressed as

[τJ , τK ] = 2f L
JKτL (2.7)

where f L
JK are the Lie algebra structure constants for the gauge group SL (2, R) ×

U (1). Note that from formula (2.6):

fJKL = gLMf M
JK = −εJKL3 (2.8)

where gLM is the Minkowski metric (with diagonal elements {1,−1,−1,−1}
and zeros off the diagonal), and εJKLM is the permutation tensor (with
ε0123 = −ε0123 = 1 ). Gauge indices J,K,L,M are lowered and raised using
the gauge metric gJK , and its inverse gJK . Repeated gauge indices are summed
from 0 to 3.

The scalar field s in formula (2.4) is invariant under SL(2, R) gauge trans-
formations, and transforms as a complex U (1) scalar under the U (1) gauge trans-
formations (i.e., chiral gauge transformations Mandl and Shaw, 1986). To make
the Lagrangian (2.3) invariant for all SL (2, R) × U (1) gauge transformations, it
suffices that m0 transform like s̄ (the complex conjugate of s). Since m0 appears
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in the Lagrangian (2.3) without derivatives, the assumption that m0 transform like
s̄ under U (1) chiral gauge transformations, has no effect on the Dirac equation.

From the Dirac bispinor Lagrangian (2.3) we can derive the following
SL (2, R) × U (1) Noether currents jK = jK

a ea with tetrad components:

jK
a = Re[i�̄γaτ

K�] (2.9)

Note that, j 0, j 1, and j 2 are SL(2, R) Noether currents and j 3 is the U (1) Noether
current. In particular j 1 is the electromagnetic current and j 3 is the chiral current;
i.e.,

j 0
a = �̄γa�

j 3
a = �̄γaγ

5� (2.10)

whereas (Takahashi, 1983, 1986),

j 1
a = Re[�̄γa�

C]

j 2
a = Im[�̄γa�

C] (2.11)

where jK
a denote the tetrad components of jK = jK

a ea . The real Noether currents
jK and complex scalar field s satisfy an orthogonal constraint known as a Fierz
identity (Takahashi, 1983, 1986):

jK
a jKb = |s|2gab

jJ
a jKa = |s|2gJK (2.12)

A derivation of the tensor form of Dirac’s bispinor Lagrangian (2.3) follows
from the map � → (jK

a , s). Apart from the singular set where s vanishes, we can
make a special choice of orthonormal reference tetrad as follows:

ea = |s|−1δK
a jK (2.13)

The following lemma shows that relative to this special reference tetrad, which
is Hestenes’ tetrad (Hestenes, 1967), the bispinor field � at each point in the
space-time is “at rest,” and � becomes locally a function of a complex scalar field
σ , which has s as its square.

Lemma 2.1. Relative to Hestenes’ tetrad (2.13), at each space-time point where
Hestenes’ tetrad is defined, every bispinor field � has the form:

� =




0

Re[σ ]

0
−iIm[σ ]


 (2.14)

where σ is a locally defined complex scalar field, which has s as its square.
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Proof: Given jK and s, we will solve for �. Substituting jK defined by formula
(2.9) into formula (2.13) for Hestenes’ tetrad, gives

Re[i�̄γaτ
K�] = |s|δK

a (2.15)

It is then straightforward to verify that all solutions of Equations (2.4) and (2.15)
are of the form (2.14) with the complex scalar σ having s as its square. �

Note that choosing Hestenes’ tetrad as the reference tetrad reduces the
bispinor field � to locally depend only on a scalar field σ , at all points where
Hestenes’ tetrad is defined. Substitution of formula (2.14) for � into formula
(2.3), expresses the Dirac bispinor Lagrangian in terms of Hestenes’ tensor fields
(ea, σ ). Further examination of formulas (2.1), (2.3), and (2.14) shows that the
Dirac Lagrangian can be expressed solely with the tensor fields (jK, s). This re-
sult, proved below in Theorem 2.2, was first derived by Takahashi using Fierz
identities (Takahashi, 1983, 1986).

To show that the tensor form of Dirac’s bispinor Lagrangian (2.3) is a con-
strained Yang–Mills Lagrangian in the limit of an infinitely large coupling constant,
we map SL (2, R) × U (1) gauge potentials FK

α and a complex scalar field ρ into
(jK, s) by setting:

jK
α = 4|ρ|2FK

α

s = 4|ρ|2ρ̄ (2.16)

where jK
α = jK

a ea
α are the tensor components of jK . From formulas (2.12) and

(2.16), since the reference tetrad ea is orthonormal, the gauge potentials FK
α satisfy

an orthogonal constraint, which can be expressed in two equivalent ways:

FK
α FKβ = |ρ|2gαβ

F J
α FKα = |ρ|2gJK (2.17)

Consider the following Yang–Mills Lagrangian for the gauge potentials FK
α and

the complex scalar field ρ:

Lg = 1

4g
FK

αβF
αβ

K + 1

g0
Dα(ρ + µ)Dα(ρ + µ) (2.18)

where, because of the symmetry of the Riemannian connection, the Yang–Mills
field tensor FK

αβ is given by

FK
αβ = ∇αFK

β − ∇βFK
α + gf K

MNFM
α FN

β (2.19)
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and where the Yang–Mills coupling constant g is a self-coupling of the gauge po-
tentials FK

α . Furthermore, in the Lagrangian (2.18), the complex scalar µ satisfies:

µ = 2m0

g0
, ∂αµ = 0 (2.20)

where m0 is the fermion mass, and g0 = (3/2)g. As previously stated for Dirac’s
bispinor Lagrangian (2.3) both the complex scalar field s and the fermion mass
m0 transform as U (1) scalars. The same is true for ρ and µ by formulas (2.16)
and (2.20). Hence the covariant derivative Dα acts on ρ + µ as follows:

Dα(ρ + µ) = ∂αρ − ig0F
3
α (ρ + µ) (2.21)

That is, g0 = (3/2)g is the Yang–Mills constant which couples the U (1) scalars ρ

and µ to the U (1) gauge potential F 3
α . (By formula (2.8), the Lie algebra structure

constants f L
JK vanish if any gauge index J,K,L equals 3, so that g0 can be

different than g.) Note that the complex scalar field µ acts as a Higgs field for
generating the fermion mass m0. We could consider subtracting a large quartic
potential containing µ from the Yang–Mills Lagrangian (2.18) of the form (Mandl
and Shaw, 1986):

Vg(µ) = g6
0

(
|µ|2 − 4|m0|2

g2
0

)2

(2.22)

whereby formulas (2.20) and (2.21) become effective formulas for large g0.

Theorem 2.2. At every space-time point where Hestenes’ tetrad is defined,
Dirac’s bispinor Lagrangian (2.3) equals the Yang–Mills Lagrangian (2.18) in
the limit of a large coupling constant. That is,

LD = lim
g→∞ Lg (2.23)

Proof: From formulas (2.1), (2.2), (2.3), (2.10), and using the following identity
for Dirac matrices (Hammond, 2002; Aitchison and Hey, 1982):

γ aγ bγ c = gabγ c − gacγ b + gbcγ a + iεabcdγ 5γd (2.24)

we can express Dirac’s bispinor Lagrangian in a Riemannian space-time as a sum
of three terms:

LD = Re
[
i�̄γ aeα

a ∂α� − m0s
] + 1

4
εabcdeα

a e
β

b (∇αeβc)j 3
d (2.25)

We will express each of these terms with the tensor fields (FK
α , ρ). Substituting

formula (2.14) for � in the first term of LD , we get using formula (2.16),

Re
[
i�̄γ aeα

a ∂α�
] = Re

[
2iρ̄F 3

α ∂αρ
]

(2.26)
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For the second term of LD , formula (2.16) gives

−Re [m0s] = −Re[4m0|ρ|2ρ̄] (2.27)

Noting that jK
a = |s|δK

a by formulas (2.9) and (2.15), and using formulas (2.13)
and (2.16), the third term of LD becomes:

1

4
εabcdeα

a e
β

b (∇αeβc)j 3
d = −(∇αFβ) · Fα × Fβ (2.28)

where Fα = (F 0
α , F 1

α , F 2
α ). Summing the three terms (2.26), (2.27), and (2.28),

formula (2.25) becomes:

LD = Re
[ − (∇αFβ) · Fα × Fβ + 2iρ̄F 3

α (∇αρ) − 4m0|ρ|2ρ̄]
(2.29)

Terms in the Yang–Mills Lagrangian (2.18) which are quartic in the fields
(FK

α , ρ) vanish by virtue of the orthogonal constraint (2.17) and the relation
between the coupling constants g0 = (3/2)g. Quadratic terms in the fields (FK

α , ρ)
vanish in the limit (2.23). Thus, the limit (2.23) only contains terms cubic in the
fields (FK

α , ρ). The cubic terms of the Yang–Mills Lagrangian (2.18) are given by

L(3)
g = Re

[
fJKL

(∇αF J
β

)
FKαFLβ + 2iρ̄F 3

α (∇αρ) + 4m0F
3
αF 3αρ̄

]
(2.30)

which equals LD given in formula (2.29), after applying the orthogonal constraint
(2.17) to obtain

F 3
αF 3α = −|ρ|2 (2.31)

and using formula (2.8) to replace the triple vector product with the Lie algebra
structure constants fJKL. �

Since Theorem 2.2 shows that the Dirac bispinor Lagrangian (2.3) and its
tensor form (2.29) are equal at all space-time points where Hestenes’ tetrad is
defined, we will briefly discuss the physical interpretation of the singularities,
where Hestenes’ tetrad is not defined. By formula (2.13) Hestenes’ tetrad ea is
defined wherever the scalar field s does not vanish. When s vanishes there are
two types of singularities. First, if the bispinor field � vanishes, both s and its
first partial derivatives vanish by formula (2.4), and the tensor form of the Dirac
equation allows ea to be arbitrary. At such space-time points the tensor fields
FK

α and ρ in the Lagrangian (2.18) vanish. Second, if s vanishes but � does not,
then the nonvanishing fermion particle current lies on the light cone (Hestenes,
1967). For physical solutions representing massive fermions, these singularities
must form an exceptional (nowhere dense) set. Thus singularities in the tensor
fields FK

α and ρ can only occur in the complement of an open dense subset of the
space-time. Consequently, putative differences between the bispinor field � and
the tensor fields FK

α and ρ cannot be observed in experiments.
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Field observables can be derived from Noether’s theorem in a Minkowski
space-time (Soper, 1976). Besides the Noether currents jK

α given in formula
(2.16) which are derived from SL (2, R) × U (1) gauge symmetry, from Minkowski
space-time symmetries we obtain the energy–momentum tensor Tαβ and the spin
polarization tensor Sαβγ , which we will use in Section 3 to derive spin connections
acting on bispinor fields. There are three methods for deriving such formulas. First,
we can apply Noether’s theorem to the Dirac bispinor Lagrangian (2.3) and then
use Fierz identities to derive the tensor formulas (Reifler and Morris, 1999, 2000).
Second, we can apply Noether’s theorem directly to the tensor form of Dirac’s
Lagrangian (2.29). Third, we can apply Noether’s theorem to the Yang–Mills
Lagrangian (2.18) and take the limit as the coupling constant g becomes infinite.
For example, for the spin polarization tensor Sαβγ in a Minkowski space-time we
have:

Sαβγ =−1

2
Re[�̄γασβγ �] =−1

2
εαβγ δ�̄γ δγ 5� = −1

2
εαβγ δj

3δ = 2Fα · Fβ × Fγ

(2.32)
where γα = δa

αγa and σαβ = (i/2)(γαγβ − γβγα), and where εαβγ δ denotes the
permutation tensor. The expression after the first equals sign in formula (2.32),
giving the spin polarization tensor Sαβγ in terms of the generators of Lorentz
transformations −(i/2)σβγ , is derived from the bispinor Lagrangian (2.3) in the
usual way (Bogoliubov and Shirkov, 1983). The expression after the second equals
sign comes from the identity for the gamma matrices (2.24). The expression
after the third equals sign uses the definition of the Noether current j 3

α . The last
expression in formula (2.32) is derived from formula (2.16) and the orthogonal
constraint (2.17).

On the other hand, formula (2.32) can be obtained directly from the spin
polarization tensor of the Yang–Mills Lagrangian (2.18) as follows:

Sαβγ = lim
g→∞ − 1

g
Re

[
FK

αβFKγ − FK
αγ FKβ

]= 2Fα · Fβ × Fγ (2.33)

The first equation of formula (2.33) expresses the spin polarization tensor for the
Yang–Mills Lagrangain (2.18) by the usual formula (Soper, 1976). The second
equation uses formula (2.19) to obtain the limit for an infinitely large coupling con-
stant g. Note that formula (2.33) also provides a definition of the spin polarization
tensor Sαβγ in a Riemannian space-time.

In a similar manner, we get from Lagrangians (2.3) and (2.18), the energy–
momentum tensor Tαβ in a Minkowski space-time as follows:

Tαβ = Re[i�̄γα∂β�] = Re
[ − (∂βFγ ) · Fα × Fγ + 2iF 3

α ρ̄(∇βρ)
]

(2.34)

This formula agrees with the formula derived by Takahashi (Reifler and Morris,
1994; Takahashi, 1983, 1986). In a Riemannian space-time we define a (non-
symmetric) energy–momentum tensor Tαβ by the following formula whose proof
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is similar to the proof of formula (2.29):

Tαβ = ea
αeb

βRe[i�̄γa∇b�] = Re
[ − (∇βFγ ) · Fα × Fγ + 2iF 3

α ρ̄(∇βρ)
]

(2.35)

where ∇a is the spin connection (2.1) and (henceforth in this paper) eα
a denotes an

arbitrary tetrad of orthonormal vector fields.
Takahashi’s formula (2.34) and formula (2.32) can be generalized to a

Riemannian space-time as follows:

Re[i�̄γa∂β�] = Re
[ − (∂βFc) · Fa × Fc + 2iF 3

a ρ̄(∂βρ)
]

(2.36)

Re[�̄γaσbc�] = −4Fa · Fb × Fc (2.37)

where FK
a = FK

α eα
a and Fa = (F 0

a , F 1
a , F 2

a ). Note that since γa are constant Dirac
matrices, the left-hand sides of formulas (2.36) and (2.37) depend only on � and
not on eα

a . The same is true of the right-hand sides, since like jK
a and s in formulas

(2.4) and (2.9), FK
a and ρ depend only on �. Thus, formula (2.36) is simply a

restatement of Takahashi’s formula (2.34) with different notation. Using formulas
(2.1) and (2.37) and the fact that

∂βFc = (∇βFγ )eγ
c + Fγ (∇βeγ

c ) (2.38)

it is straightforward to verify that formulas (2.35) and (2.36) are equivalent.

3. SPIN CONNECTIONS FOR AN ARBITRARY
LINEAR CONNECTION

In Section 2 we derived the following formula for the tensor form of the
Dirac Lagrangian using Hestenes’ tetrad in the spin connection for a Riemannian
space-time:

LD = Re
[ − (∇αFβ) · Fα × Fβ + 2iρ̄F 3

α (∇αρ) − 4m0|ρ|2ρ̄]
(3.1)

In this section we will reverse our steps and generalize ∇α in this tensor Lagrangian
from a Riemannian connection to a general linear connection, and from this
substitution obtain general spin connections acting on bispinors. In Theorem 3.1
we describe spin connections for which Dirac’s bispinor equation is form invariant.
We will then discuss several different spin connections found in the literature for
which Dirac’s bispinor equation is not form invariant.

We can express the Lagrangian (3.1) using components FK
a = FK

α eα
a of the

gauge potentials FK
α with respect to an arbitrary tetrad of orthonormal vector fields

eα
a . The tetrad of orthonormal vector fields eα

a satisfies:

gαβeα
a e

β

b = gab

gabeα
a e

β

b = gαβ (3.2)
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where as in Section 2, tetrad indices are denoted by a, b, c, d = 0, 1, 2, 3 and
general coordinate indices are denoted by α, β, γ , δ = 0, 1, 2, 3 and where gαβ is
a general space-time metric with inverse gαβ , and

gab = gab =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 (3.3)

In the derivation that follows, we will be careful to distinguish the covariant
and contravariant coordinate indices. Since for a non-Riemannian connection,
∇αgβγ does not generally vanish, notation must distinguish between a tetrad of
orthonormal vector fields eα

a , and its dual tetrad of orthonormal one-forms εa
α .

However, since gab is a constant metric, we will freely raise and lower tetrad
indices (e.g., eαa = gabeα

b ). We have

εa
α = gabgαβe

β

b

eα
a = gαβgabε

b
β (3.4)

Note that eα
a are components of the vector fields ea = eα

a ∂α with respect to co-
ordinate vector fields ∂α on the space-time, whereas εa

α are components of the
one-forms εa = εa

αdxα (dual to ea) with respect to coordinate one-forms dxα .
Thus,

εa
αeβ

a = δβ
α

εa
αeα

b = δa
b (3.5)

where δβ
α (respectively δa

b ) equals one if α = β (respectively a = b) and equals
zero otherwise. We have

FK
a = FK

α eα
a

FK
α = FK

a εa
α (3.6)

From formulas (3.5) and (3.6), the orthogonal constraint (2.17) becomes:

FK
a FKb = |ρ|2gab

F J
a FKa = |ρ|2gJK (3.7)

Note that the components FK
a transform covariantly under Lorentz and

SL (2, R) × U (1) gauge transformations, but transform as scalars under
coordinate transformations.

In a curved space-time, we replace partial derivatives ∂α with covariant deriva-
tives ∇α given by
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∇αFK
β = ∂αFK

β − �
γ

αβFK
γ

∇αρ = ∂αρ (3.8)

where �
γ

αβ are the connection coefficients. We first consider torsion-free con-
nections. Since �

γ

αβ = �
γ

βα for torsion-free connections, the Lagrangian (3.1) is
unaffected when ∂α is used instead of ∇α . The first term of the Lagrangian (3.1)
becomes, using formulas (3.2) through (3.8):

(∇αFβ) · Fα × Fβ = (∂αFβ) · Fα × Fβ

= ∂α(Faε
a
β) · Fbe

αb × Fce
βc

= (∂αFc) · Fb × Fce
αb + Fa · Fb × Fc

(
∂αεa

β

)
eαbeβc

= (∂αFc) · Fb × Fce
αb + 1

2
ωabcS

abc (3.9)

where we denote Fa = (F 0
a , F 1

a , F 2
a ), and similar to formula (2.32) we define:

Sabc = 2Fa · Fb × Fc (3.10)

Then using the antisymmetry of Sabc, we define ωabc in formula (3.9) as:

ωabc = eα
a e

β

b (∂αεβc) (3.11)

Formula (3.9) gives:

(∇αFβ) · Fα × Fβ = eαb(∂αFc) · Fb × Fc + 1

2
ωabcS

abc (3.12)

From formulas (2.4), (2.16), and (2.36) we have:

Re[i�̄γb∂α�] = Re
[ − (∂αFc) · Fb × Fc + 2iF 3

b ρ̄(∂αρ)
]

Re[�̄�] = Re[4|ρ|2ρ] (3.13)

Substituting formulas (3.12) and (3.13) into (3.1), we obtain:

LD = Re

[
i�̄γ aeα

a ∂α� − m0�̄� − 1

2
ωabcS

abc

]
(3.14)

where we used formulas (2.4) and (2.16) to obtain the mass term. Formulas (3.10)
and (2.37) give:

Sabc = −1

2
Re[�̄γ aσ bc�] (3.15)

Thus, formula (3.14) becomes:

LD = Re[i�̄γ a∇a� − m0�̄�] (3.16)

where ∇a acts on bispinors as:

∇a = eα
a ∂α − i

4
ωabcσ

bc (3.17)
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Since the spin polarization tensor Sabc is antisymmetric in all indices (see
formula (3.10)), we can cyclically permute the tetrad indices a, b, c of ωabc without
affecting the Lagrangian (3.14). Hence, ∇a in formula (3.17) is not unique, and
any linear combination of ωabc, ωbca , and ωcab whose weights sum to one, can
replace ωabc. Variation of the action associated with the Lagrangian (3.16) with
respect to the bispinor field � then shows that the Dirac equation is form invariant
only if the weights (1,−1, 1) are chosen. Form invariant means that the Dirac
equation can be expressed solely with the spin connection ∇a as follows:

iγ a∇a� = m0� (3.18)

with no additional terms involving the tetrad (Hehl and Datta, 1971; Hammond,
2002).

It is straightfoward to generalize the derivation to connections with torsion,
whereby ωabc in formula (3.17) for ∇a becomes:

ωabc = eα
a e

β

b (∂αεβc) − 1

2
tαβγ eα

[ae
β

b e
γ

c] (3.19)

where tαβγ = �αβγ − �βαγ is the torsion tensor, and the brackets [a, b, c] indicate
an antisymmetric average over the tetrad indices a, b, c. Following the previous
argument, we can replace ωabc with any linear combination of ωabc, ωbca , and
ωcab whose weights sum to one, and again the linear combination with weights
(1,−1, 1) defines the spin connection for which the Dirac equation is form invari-
ant. Thus,

∇a = eα
a ∂α − i

4
(
abc − 
bca + 
cab − t[abc]/2)σbc (3.20)

where 
abc = eα
a e

β

b (∂αεβc) and tabc = tαβγ eα
a e

β

b e
γ
c . From formula (3.20) we see

that this spin connection depends only on the reference tetrad εa
α and the totally

antisymmetric part of the torsion tensor tαβγ . When torsion vanishes, this spin
connection depends only on the reference tetrad (Hehl and Datta, 1971; Weinberg,
1972; Jhangiani, 1977; Hammond, 2002). Noting that σbc = −σ cb, formula (3.20)
agrees with the spin connections in Hehl and Datta (1971) and in Hammond (2002)
for metric compatible connections with totally antisymmetric torsion.

Theorem 3.1. For an arbitrary linear connection ∇α , the spin connection ∇a

defined by formula (3.20) satisfies the following two conditions:

1) The bispinor Lagrangian (with ∇a) equals the tensor Lagrangian
(with ∇α).

2) The bispinor Dirac equation is form invariant.

Furthermore, the Dirac operator D = γ a∇a is unique for all spin connections
∇a satisfying conditions (1) and (2).



1322 Reifler and Morris

Proof: Since the spin connection (3.20) satisfies the two conditions, it remains
to prove only the second assertion. Let ∇a and ∇′

a = ∇a + Oa be two spin connec-
tions satisfying conditions (1) and (2), where the two spin connections differ by an
operator Oa acting on bispinors. Let D = γ a∇a and D′ = γ a∇′

a be the respective
Dirac operators, and let LD and L′

D denote the respective bispinor Lagrangians
(3.16). By condition (1), both bispinor Lagrangians equal the tensor Lagrangian
(3.1), hence L′

D = LD . We have

L′
D − LD = Re[i�̄γ aOa�] = 0 (3.21)

From formulas (3.16) and (3.21) the Euler-Lagrange equations give:

iγ a∇a� = m0� = iγ a∇′
a� = iγ a∇a� + iγ aOa� (3.22)

Thus, γ aOa = 0. �

Note that the operator Oa must be constructed from available tensors, such
as torsion and non-metricity tensors. In the Riemannian case, these tensors vanish,
so that Oa = 0. For example, take the spin connection in Utiyama and Jhangiani
(Utiyama, 1956; Jhangiani, 1977):

∇a = eα
a ∂α − i

4
eα
a e

β

b (∇αεβc)σbc (3.23)

For a Riemannian connection ∇α , expressing the Riemannian connection in terms
of the tetrad εa

α in formula (3.23), gives the spin connection (3.20) with weights
(1,−1, 1) as before. However for a general linear connection, formula (3.23) does
not give a form invariant Dirac equation as in formula (3.18). That is, the spin
connections (3.20) and (3.23) are not equal for general linear connections.

Note that without changing the Lagrangian (3.16), we can change any spin
connection ∇a to ∇′

a = ∇a + va , where va is any (real) Lorentz four-vector field.
Hurley and Vandyck, studying conformal connections that commute with tensor-
spinor maps, consider a class of such spin connections where

va = − k

16
eα
a gβγ (∇αgβγ ) (3.24)

and where k is a constant (Hurley and Vandyck, 2000). Except in special cases,
these spin connections when substituted into the Lagrangian (3.16) do not generally
make the Dirac equation form invariant.

De Andrade, Guillen, and Pereira propose a teleparallel spin connection that,
though similar to the spin connection (3.20), lacks a torsion term (de Andrade
et al., 2001). While this spin connection makes the bispinor Dirac equation form
invariant, it is not derived from the teleparallel connection in the tensor theory.
Substituting a teleparallel connection ∇α into formula (3.1) results in a spin con-
nection containing the torsion term t[abc]. Thus, the proposed spin connection
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is derived from a Riemannian connection in the tensor theory, and not from a
teleparallel connection.
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